Construction of New Families of MDS Diffusion Layers
نویسندگان
چکیده
Diffusion layers are crucial components of symmetric ciphers. These components, along with suitable Sboxes, can make symmetric ciphers resistant against statistical attacks like linear and differential cryptanalysis. Conventional MDS diffusion layers, which are defined as matrices over finite fields, have been used in symmetric ciphers such as AES, Twofish and SNOW. In this paper, we study linear, linearized and nonlinear MDS diffusion layers. We investigate linearized diffusion layers, which are a generalization of conventional diffusion layers; these diffusion layers are used in symmetric ciphers like SMS4, Loiss and ZUC. We introduce some new families of linearized MDS diffusion layers and as a consequence, we present a method for construction of randomized linear diffusion layers over a finite field. Nonlinear MDS diffusion layers are introduced in Klimov’s thesis; we investigate nonlinear MDS diffusion layers theoretically, and we present a new family of nonlinear MDS diffusion layers. We show that these nonlinear diffusion layers can be made randomized with a low implementation cost. An important fact about linearized and nonlinear diffusion layers is that they are more resistant against algebraic attacks in comparison to conventional diffusion layers. A special case of diffusion layers are (0,1)-diffusion layers. This type of diffusion layers are used in symmetric ciphers like ARIA. We examine (0,1)-diffusion layers and prove a theorem about them. At last, we study linearized MDS diffusion layers of symmetric ciphers Loiss, SMS4 and ZUC, from the mathematical viewpoint.
منابع مشابه
Lightweight 4x4 MDS Matrices for Hardware-Oriented Cryptographic Primitives
Linear diffusion layer is an important part of lightweight block ciphers and hash functions. This paper presents an efficient class of lightweight 4x4 MDS matrices such that the implementation cost of them and their corresponding inverses are equal. The main target of the paper is hardware oriented cryptographic primitives and the implementation cost is measured in terms of the required number ...
متن کاملDirect Construction of Recursive MDS Diffusion Layers Using Shortened BCH Codes
MDS matrices allow to build optimal linear diffusion layers in block ciphers. However, MDS matrices cannot be sparse and usually have a large description, inducing costly software/hardware implementations. Recursive MDS matrices allow to solve this problem by focusing on MDS matrices that can be computed as a power of a simple companion matrix, thus having a compact description suitable even fo...
متن کاملAlgebraic construction of cryptographically good binary linear transformations
MaximumDistance Separable (MDS) andMaximumDistance Binary Linear (MDBL) codes are used as diffusion layers in the design of the well-known block ciphers like the Advanced Encryption Standard, Khazad, Camellia, and ARIA. The reason for the use of these codes in the design of block ciphers is that they provide optimal diffusion effect to meet security of a round function of a block cipher. On the...
متن کاملMultipermutations in Crypto World: Different Faces of the Perfect Diffusion Layer
Diffusion layers, and specially perfect diffusion layers, are very important subject for cryptographic research. Main quest is a perfect diffusion layer with more optimal hardware and/or software implementations (if possible, the last needs to holds also for its inverse). Different structures can be used for representing these layers, but all are interconnected. We start with multipermutations ...
متن کاملEffects of Building Construction Overburden on Liquefaction Potential of Soils
As one of the significant phenomena in earthquake geotechnical engineering, liquefaction can cause severe damages. A number of factors play a role in the occurrence of liquefaction such as magnitude of earthquake, void ratio, relative density, and fines content percentage. The impact of building construction overburdens on liquefaction is of paramount importance. The present study was aimed at ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014